Quickstart ========== This minimal example shows how to train an encoding model using the LeBel assembly with word rate features. This is the simplest and fastest way to get started with LITcoder. .. code-block:: python from encoding.assembly.assembly_loader import load_assembly from encoding.features.factory import FeatureExtractorFactory from encoding.downsample.downsampling import Downsampler from encoding.models.nested_cv import NestedCVModel from encoding.trainer import AbstractTrainer # 1) Load prepackaged assembly assembly_path = "assembly_lebel_uts03.pkl" assembly = load_assembly(assembly_path) # 2) Configure components (wordrate-only) extractor = FeatureExtractorFactory.create_extractor( modality="wordrate", model_name="wordrate", config={}, cache_dir="cache", ) downsampler = Downsampler() model = NestedCVModel(model_name="ridge_regression") # FIR, downsampling, and trimming match our LeBel defaults fir_delays = [1, 2, 3, 4] trimming_config = { "train_features_start": 10, "train_features_end": -5, "train_targets_start": 0, "train_targets_end": None, "test_features_start": 50, "test_features_end": -5, "test_targets_start": 40, "test_targets_end": None, } downsample_config = {} # 3) Train trainer = AbstractTrainer( assembly=assembly, feature_extractors=[extractor], downsampler=downsampler, model=model, fir_delays=fir_delays, trimming_config=trimming_config, use_train_test_split=True, logger_backend="wandb", wandb_project_name="lebel-wordrate", dataset_type="lebel", results_dir="results", downsample_config=downsample_config, ) metrics = trainer.train() print({ "median_correlation": metrics.get("median_score", float("nan")), "n_significant": metrics.get("n_significant"), }) Prerequisites ------------- Before running this example, you need to: 1. **Download the LeBel assembly**: .. code-block:: bash gdown 1q-XLPjvhd8doGFhYBmeOkcenS9Y59x64 2. **Install LITcoder**: .. code-block:: bash git clone git@github.com:GT-LIT-Lab/litcoder_core.git cd litcoder_core conda create -n litcoder -y python=3.12.8 conda activate litcoder conda install pip pip install -e .