Models ====== Core models ----------- - ``encoding.models.ridge_regression.RidgeRegressionModel``: efficient voxel-wise ridge - ``encoding.models.nested_cv``: nested CV utilities and pipelines - ``encoding.models.sklearn_model.SklearnModel``: wrapper for scikit-learn estimators - ``encoding.models.linear`` and ``encoding.models.base``: common interfaces Training modes -------------- - Concatenated (LPP/Narratives): stack all stories, fit cross-validated ridge - Train/Test split (Lebel): fit on early segments, test on held-out segments Example ------- .. code-block:: python from encoding.models.ridge_regression import RidgeRegressionModel model = RidgeRegressionModel(n_alphas=20)